Low-Rank Total Variation for Image Super-Resolution

نویسندگان

  • Feng Shi
  • Jian Cheng
  • Li Wang
  • Pew-Thian Yap
  • Dinggang Shen
چکیده

Most natural images can be approximated using their low-rank components. This fact has'been successfully exploited in recent advancements of matrix completion algorithms for image recovery. However, a major limitation of low-rank matrix completion algorithms is that they cannot recover the case where a whole row or column is missing. The missing row or column will be simply filled as an arbitrary combination of other rows or columns with known values. This precludes the application of matrix completion to problems such as super-resolution (SR) where missing values in many rows and columns need to be recovered in the process of up-sampling a low-resolution image. Moreover, low-rank regularization considers information globally from the whole image and does not take proper consideration of local spatial consistency. Accordingly, we propose in this paper a solution to the SR problem via simultaneous (global) low-rank and (local) total variation (TV) regularization. We solve the respective cost function using the alternating direction method of multipliers (ADMM). Experiments on MR images of adults and pediatric subjects demonstrate that the proposed method enhances the details of the recovered high-resolution images, and outperforms the nearest-neighbor interpolation, cubic interpolation, non-local means, and TV-based up-sampling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

Super-resolution of Defocus Blurred Images

Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 16 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013